Pouvez-vous donner quelques exemples de la vie réelle de séries chronologiques pour lesquelles un processus de moyenne mobile de l'ordre q, à savoir yt somme q thetai varepsilon varepsilont, le texte varepsilont sim mathcal (0, sigma2) a une raison a priori d'être un bon modèle Au moins Pour moi, les processus autorégressifs semblent être très faciles à comprendre intuitivement, alors que les processus MA ne semblent pas aussi naturelles à première vue. Notez que je ne suis pas intéressé par les résultats théoriques ici (tels que le théorème de Wolds ou l'invertibilité). Comme un exemple de ce que je cherche, supposons que vous avez des rendements quotidiens de stock rt sim text (0, sigma2). Ensuite, les rendements hebdomadaires moyens auront une structure MA (4) comme un artefact purement statistique. Basj Aux États-Unis, les magasins et les fabricants émettent fréquemment des coupons qui peuvent être échangés contre un rabais ou un escompte financier lors de l'achat d'un produit. Ils sont souvent largement distribués par le courrier, les magazines, les journaux, Internet, directement auprès du détaillant, et les appareils mobiles tels que les téléphones cellulaires. La plupart des coupons ont une date d'expiration après laquelle ils ne seront pas honorés par le magasin, et c'est ce qui produit quotvintagesquot. Coupons éventuellement stimuler les ventes, mais combien il ya là-bas ou comment grand le remboursement n'est pas toujours connu de l'analyste de données. Vous pouvez penser à eux une erreur positive. Ndash Dimitriy V. Masterov Jan 28 16 à 21:51 dans notre article Scaling volatilité du portefeuille et le calcul des contributions au risque en présence de série de corrélations croisées, nous analysons un modèle multivarié des rendements des actifs. En raison des différentes heures de fermeture des bourses, une structure de dépendance (par la covariance) apparaît. Cette dépendance ne dure qu'une seule période. Ainsi, nous le modélisons comme un processus moyen mobile de déplacement d'ordre 1 (voir pages 4 et 5). Le processus de portefeuille résultant est une transformation linéaire d'un processus VMA (1) qui est en général un processus MA (q) avec qge1 (voir détails aux pages 15 et 16). Répondue Dec 3 12 at 21: 39 Moyennes mobiles mesurées: Les bases Au fil des ans, les techniciens ont trouvé deux problèmes avec la moyenne mobile simple. Le premier problème réside dans le laps de temps de la moyenne mobile (MA). La plupart des analystes techniques croient que l'action prix. Le prix d'ouverture ou de clôture de l'action, ne suffit pas à dépendre de prédire correctement les signaux d'achat ou de vente de l'action de crossover MA. Pour résoudre ce problème, les analystes attribuent désormais plus de poids aux données de prix les plus récentes en utilisant la moyenne mobile exponentiellement lissée (EMA). Un exemple Par exemple, en utilisant un MA de 10 jours, un analyste prendrait le cours de clôture du 10e jour et multiplier ce nombre par 10, le neuvième jour par neuf, le huitième Jour par huit et ainsi de suite à la première de la MA. Une fois que le total a été déterminé, l'analyste divise ensuite le nombre par l'addition des multiplicateurs. Si vous ajoutez les multiplicateurs de l'exemple MA de 10 jours, le nombre est 55. Cet indicateur est connu comme la moyenne mobile pondérée linéairement. De nombreux techniciens sont convaincus de la moyenne mobile exponentiellement lissée (EMA). Cet indicateur a été expliqué de tant de manières différentes qu'il confond les étudiants et les investisseurs. Peut-être la meilleure explication vient de John J. Murphys Analyse technique des marchés financiers, (publié par le New York Institute of Finance, 1999): La moyenne mobile exponentiellement lissée répond aux deux problèmes associés à la moyenne mobile simple. Tout d'abord, la moyenne exponentiellement lissée attribue un poids plus important aux données les plus récentes. Par conséquent, il s'agit d'une moyenne mobile pondérée. Mais si elle attribue moins d'importance aux données sur les prix passés, elle inclut dans son calcul toutes les données de la vie de l'instrument. En outre, l'utilisateur peut ajuster la pondération pour donner plus ou moins de poids au prix des jours les plus récents, qui est ajouté à un pourcentage de la valeur des jours précédents. La somme des deux valeurs en pourcentage s'élève à 100. Par exemple, le prix des derniers jours pourrait être attribué à un poids de 10 (0,10), qui est ajouté au poids des jours précédents de 90 (0,90). Cela donne le dernier jour 10 de la pondération totale. Ce serait l'équivalent d'une moyenne de 20 jours, en donnant le prix des derniers jours une valeur plus petite de 5 (0,05). Figure 1: Moyenne mobile lissée exponentiellement Le graphique ci-dessus montre l'indice composé Nasdaq de la première semaine d'août 2000 au 1er juin 2001. Comme vous pouvez le voir clairement, l'EMA qui utilise les données de clôture sur un Période de neuf jours, a des signaux de vente définis le 8 septembre (marqué par une flèche vers le bas noire). C'était le jour où l'indice est passé au-dessous du niveau de 4.000. La deuxième flèche noire montre une autre jambe que les techniciens attendaient. Le Nasdaq ne pouvait pas générer assez de volume et d'intérêt des investisseurs de détail pour briser la marque de 3000. Il a ensuite plongé vers le bas de nouveau à fond à 1619,58 le 4 avril. La tendance haussière du 12 avril est marquée par une flèche. Ici, l'indice a fermé à 1,961.46, et les techniciens ont commencé à voir les gestionnaires de fonds institutionnels commencent à ramasser quelques bonnes affaires comme Cisco, Microsoft et certaines des questions liées à l'énergie. En pratique, la moyenne mobile fournira une bonne estimation de la moyenne des séries chronologiques si la moyenne est constante ou change lentement. Dans le cas d'une moyenne constante, la plus grande valeur de m donnera les meilleures estimations de la moyenne sous-jacente. Une période d'observation plus longue évalue en moyenne les effets de la variabilité. Le but de fournir un plus petit m est de permettre à la prévision de répondre à un changement dans le processus sous-jacent. Pour illustrer, nous proposons un ensemble de données qui intègre des changements dans la moyenne sous-jacente de la série chronologique. La figure montre la série chronologique utilisée pour l'illustration ainsi que la demande moyenne à partir de laquelle la série a été générée. La moyenne commence comme une constante à 10. En commençant au temps 21, elle augmente d'une unité dans chaque période jusqu'à ce qu'elle atteigne la valeur de 20 au temps 30. Puis elle redevient constante. Les données sont simulées en ajoutant à la moyenne un bruit aléatoire issu d'une distribution normale avec moyenne nulle et écart-type 3. Les résultats de la simulation sont arrondis à l'entier le plus proche. Le tableau montre les observations simulées utilisées dans l'exemple. Lorsque nous utilisons la table, nous devons nous rappeler qu'à un moment donné, seules les données passées sont connues. Les estimations du paramètre du modèle, pour trois valeurs différentes de m, sont indiquées avec la moyenne des séries temporelles dans la figure ci-dessous. La figure montre l'estimation moyenne mobile de la moyenne à chaque instant et non pas la prévision. Les prévisions changeraient les courbes de la moyenne mobile vers la droite par périodes. Une conclusion ressort immédiatement de la figure. Pour les trois estimations, la moyenne mobile est en retard par rapport à la tendance linéaire, le décalage augmentant avec m. Le retard est la distance entre le modèle et l'estimation dans la dimension temporelle. En raison du décalage, la moyenne mobile sous-estime les observations à mesure que la moyenne augmente. Le biais de l'estimateur est la différence à un moment précis dans la valeur moyenne du modèle et la valeur moyenne prédite par la moyenne mobile. Le biais lorsque la moyenne augmente est négatif. Pour une moyenne décroissante, le biais est positif. Le retard dans le temps et le biais introduit dans l'estimation sont des fonctions de m. Plus la valeur de m. Plus l'ampleur du décalage et du biais est grande. Pour une série en constante augmentation avec tendance a. Les valeurs de retard et de biais de l'estimateur de la moyenne sont données dans les équations ci-dessous. Les courbes d'exemple ne correspondent pas à ces équations parce que le modèle d'exemple n'est pas en augmentation continue, plutôt qu'il commence comme une constante, des changements à une tendance et devient alors à nouveau constante. Les courbes d'exemple sont également affectées par le bruit. La prévision moyenne mobile des périodes dans le futur est représentée par le déplacement des courbes vers la droite. Le décalage et le biais augmentent proportionnellement. Les équations ci-dessous indiquent le décalage et le biais d'une période de prévision dans le futur par rapport aux paramètres du modèle. Encore une fois, ces formules sont pour une série chronologique avec une tendance linéaire constante. Nous ne devrions pas être surpris de ce résultat. L'estimateur de la moyenne mobile est basé sur l'hypothèse d'une moyenne constante, et l'exemple a une tendance linéaire dans la moyenne pendant une partie de la période d'étude. Étant donné que les séries de temps réel obéiront rarement exactement aux hypothèses de n'importe quel modèle, nous devrions être préparés à de tels résultats. On peut aussi conclure de la figure que la variabilité du bruit a le plus grand effet pour m plus petit. L'estimation est beaucoup plus volatile pour la moyenne mobile de 5 que la moyenne mobile de 20. Nous avons les désirs contradictoires d'augmenter m pour réduire l'effet de la variabilité due au bruit et diminuer m pour rendre la prévision plus sensible aux changements En moyenne. L'erreur est la différence entre les données réelles et la valeur prévue. Si la série chronologique est vraiment une valeur constante, la valeur attendue de l'erreur est nulle et la variance de l'erreur est composée d'un terme qui est une fonction de et d'un second terme qui est la variance du bruit,. Le premier terme est la variance de la moyenne estimée avec un échantillon de m observations, en supposant que les données proviennent d'une population avec une moyenne constante. Ce terme est minimisé en faisant m le plus grand possible. Un grand m rend la prévision insensible à une modification de la série chronologique sous-jacente. Pour rendre la prévision sensible aux changements, nous voulons m aussi petit que possible (1), mais cela augmente la variance d'erreur. La prévision pratique nécessite une valeur intermédiaire. Prévision avec Excel Le complément de prévision implémente les formules de moyenne mobile. L'exemple ci-dessous montre l'analyse fournie par l'add-in pour les données d'échantillon de la colonne B. Les 10 premières observations sont indexées -9 à 0. Par rapport au tableau ci-dessus, les indices de période sont décalés de -10. Les dix premières observations fournissent les valeurs de démarrage pour l'estimation et sont utilisées pour calculer la moyenne mobile pour la période 0. La colonne MA (10) (C) montre les moyennes mobiles calculées. Le paramètre de la moyenne mobile m est dans la cellule C3. La colonne Fore (1) (D) montre une prévision pour une période dans le futur. L'intervalle de prévision est dans la cellule D3. Lorsque l'intervalle de prévision est changé en un nombre plus grand, les nombres de la colonne Fore sont décalés vers le bas. La colonne Err (1) (E) montre la différence entre l'observation et la prévision. Par exemple, l'observation au temps 1 est 6. La valeur prévisionnelle faite à partir de la moyenne mobile au temps 0 est 11.1. L'erreur est alors de -5,1. L'écart type et l'écart moyen moyen (MAD) sont calculés respectivement dans les cellules E6 et E7.
No comments:
Post a Comment